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It is shown that a certain class of  nonlinear systems possesses a unique and 
stable stationary state when subjected to periodic dichotomous modulations of 
an external parameter. This result enables us to define a probability density for 
the system and to characterize its shape and support. We compare this 
probability density with the one obtained in the case that the external parameter 
fluctuates randomly like a Markovian dichotomous noise and discuss various 
fluctuation-induced transition phenomena. The effects of these two types of fluc- 
tuations are quite dissimilar: the random fluctuations give rise to a richer 
behavior. The results are applied to the Freedericksz transition in nematic liquid 
crystals. 

KEY WORDS:  Dichotomous noise; periodic dichotomous modulations; 
fluctuation induced transitions; Freedericksz transition. 

1. INTRODUCTION 

The state of a nonlinear system far from thermodynamic equilibrium 
strongly depends on the external constraints which the surroundings impose 
on the system. Most studies of the behavior of nonequilibrium systems and 
of the various transition phenomena which can occur in such systems have 
assumed that the environmental conditions show no temporal variations; see, 
for instance, Refs. 1 and 2. While this is a convenient assumption for 
theoretical and experimental studies, it nevertheless corresponds to an 
idealization. Environments of natural nonequilibrium systems often display a 
great amount of variability. Variations in the external constraints can be 
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broken down essentially into two types: (i) periodic changes in the 
environment, and (ii)random environmental fluctuations. The effect of 
periodic perturbations has mainly been studied in the context of nonlinear 
oscillators. This is of special interest in biological applications, where the 
rhythm of autonomous biological oscillators can be markedly affected by 
such perturbations. (For recent reviews, see Refs. 3 and 4.) The second type 
of environmental variability has received increasing interest over the last few 
years. Here most studies consider one-variable systems which obey a first- 
order temporal evolution equation. (A few papers deal with two-variable 
systems. (5'6)) The evolution equation contains the influence of the 
environment in the form of some external parameter. Random environmental 
fluctuations are therefore modeled by replacing this parameter by a 
stationary stochastic process with a fixed mean value and a specified 
correlation function. The evolution equation of the system in question 
becomes a stochastic differential equation and the state of the system is given 
by a random variable. The latter is characterized by a probability 
distribution. It has been found, theoretically and experimentally, that external 
noise can give rise to unexpected transition phenomena: The state of the 
system, as characterized by its probability distribution, might change 
qualitatively while the variance or correlation time of the external noise is 
varied and the average value of the external constraints remains fixed. (v-ll) 
For instance, the stationary probability density of the system might change 
from monomodal to bimodal behavior, even if the system does not display 
any bistable behavior for constant ambient conditions. (lz'~3) This can be 
called a noise-induced transition to bistability. In fact, as in the case of 
equilibrium phase transitions the extrema of the stationary probability 
density should be identified with the "phases," i.e., the macroscopic steady 
states of the  system. The maxima correspond to stable steady states, the 
minima to unstable states. The main arguments for this identification are 
(i) the maxima are the most probable states and are therefore preferentially 
observed; and (ii) the extrema (and not some moments) converge, as the 
noise is "turned off," to the steady states of the system for constant external 
constraints. Thus the major upshot of studies on the effect of external noise 
is the existence of a new class of nonequilibrium transitions. Surprisingly, 
external noise can "create" new macroscopic states. At well-defined 
threshold values of the variance or correlation time of the noise, the 
macroscopic behavior of the system changes qualitatively, i.e., the system 
undergoes a nonequilibrium transition, a so-called noise-induced transition. 

It is natural to ask if the observed noise-induced effects depend on the 
nature of the fluctuations of the environment. Do the same phenomena 
appear when the external parameter varies in a similar, but regular way? 
This is a multifaceted question. We wish to consider random and regular 
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modulations which are qualitatively similar, and, in order to compare the 
effects of the different variations it is necessary to establish a well-defined 
stationary probability density for systems under the influence of nonrandom 
variations. Although studies and comparison of the moments of some 
systems subjected to random and periodic fluctuations have been made, (~4) 
we adopt the stationary probability density as the criteria for comparison of 
systems under the different influences. We will see that the effects of the two 
types of variations in the systems we study are often quite different, in 
distinction from the conclusions of previous studies. 

In this paper we restrict ourselves to specific types of random fluc- 
tuations for which we may define qualitatively similar types of periodic 
variations and ensure the existence of a stationary probability density for 
systems under its influence. The random fluctuations are of the form of the 
symmetric dichotomous Markov process, a process which takes on only two 
values with an exponentially distributed waiting time for the switches 
between the two values. This process is characterized by two parameters: the 
amplitude of the variation and the average switching frequency. Clearly, the 
analogous type of nonrandom modulation is one which switches between the 
same two values at a fixed frequency equal to the averge switching frequency 
of the random process. 

Conveniently, the problem of determining the stationary probability 
density of a system under the influence of dichotomous Markov noise is an 
exactly soluble one. In Section 2 of this paper we review the properties of 
this process and the stationary density of the state variables of systems 
subjected to it. Section 3 is concerned with the periodic variations: we prove 
the existence of a stationary state and define a stationary probability density 
for a broad class of systems under the influence of such variations. A 
comparison of the effects induced by the two kinds of fluctuations is made in 
Section 4, and Section 5 contains a summary of our results and a discusion 
of the similarities and differences between the effects of random and periodic 
fluctuations. 

2. THE R A N D O M  F L U C T U A T I O N S  

The symmetric dichotomous Markov process, It ,  is a random process 
whose value switches between two values +A at random times. The waiting 
times in each state are exponentially distributed, which ensures the Markov 
character of the process. If the process starts with equal probabilities for 
each state it is a stationary process with mean value zero, E{It}  = 0, and an 
exponentially decreasing correlation function 

E{Itl~+~} = AZe -  ~ (1) 
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The correlation time is 

rco~ = y - '  (2) 

while the average frequency of transition from one state to the other is y/2. 
Systems which obey the deterministic evolution equation 

= x)  (3) 

(where ;~ is the external parameter characterizing the environment) will, 
under the influence of fluctuations of this form, obey the stochastic 
differential equation 

2 t = F(X t, i + It) (4) 

where ~. is the mean value of 2. The stationary probability density of X t may 
be evaluated exactly and is given by (~5) 

l 1 1 I 
p , ( x ) = N  F ( x , i + A )  F(x ,~ . -A)  

•  - dx' r ( x ' , ~ + A )  + F ( x ' , ~ - A ) -  (5) 

for x in the interior of the support U = Ix_, x+ ]; 

p,(x) =- O, x ~ U (6) 

and N is a normalization constant. The boundaries x:~ of the support obey 
the equation 

0 =F(x•  + A) (7) 

The significance of the support U is illustrated in Fig. 1. The extrema of 
ps(x) within the support are the points where the derivative vanishes, i.e., the 
solutions of 

= _  
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Fig. 1. A plot of the steady state x s of F(x,)~) vs. ~ to illustrate the significance of the 
supported U. U is the region of state space between the steady states determined by the two 
values taken by the external parameter. The arrows indicate the direction of 2 as given by the 
deterministic evolution equation. Under the influence of dichotomous noise, the values of x 
will be restricted to U as t--* oo. 

The  d i c h o t o m o u s  M a r k o v  process  has a whi te  noise  l imit :  i f  y--* oo and 

A ~ oo such that  

A 2 G 2 

7 2 
(cons tan t )  (9) 

I t has the same  effect  on a sys tem in which  it appears  l inear ly  as does  the 

G a u s s i a n  whi te  noise  process  ~t 4 with ampl i tude  a. (15) Indeed,  for evo lu t ion  

equa t ions  o f  the fo rm 

Xt  =: f ( X t )  + I th (Xt )  ( l o )  

the s ta t ionary  p robab i l i ty  dens i ty  for Xt ,  in the whi te  noise  l imit ,  goes  over  
to 

l f ( x ' ) t  (11)  

4 With E{~t} = O, E{~t~t+~} = 5(z). 
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This is the stationary probability density of the process defined by the 
stochastic differential equation 

J(, = f (X , )  + ah(Xt) ~r (12) 

in the Stratonovich interpretation. 

3. THE PERIODIC FLUCTUATIONS 

We now consider periodic fluctuations in the environment analogous to 
the random process treated in the previous section. As before, the external 
parameter switches between two values, [ :t: A. The switching, however, now 
occurs at definite time intervals of length 7"/2 (so that the period of the 
external parameter is T). The periodic variation will mimic the dichotomous 
Markov process with correlation time 7-1 when 

2 y 

T 2 
(13) 

i.e., when the average switching frequencies of the two variations are the 
same. 

Before we may define a stationary density for systems under the 
influence of these periodic fluctuations, we must establish the existence, 
uniqueness, and asymptotic stability of a stationary state. The stationary 
state is that in which the system returns to the same position after each cycle 
of the external parameter. The uniqueness and asymptotic stability of such a 
state then imply that the system will always approach this state independent 
of the initial condition. Once in this state, a probability density for the state 
variable may be defined in a straightforward manner. 

The stationary state for a system described by the evolution equation 

where 

2 = F(x, 2(t)) (14) 

t2 + A, nT < t < (n + 1/2)T, n = 0 ,  1,2 .... 
2 ( t ) =  (15) 

- A ,  ( n + l / Z ) T < t < ( n + l ) T  

is the solution y(t) with the initial condition y_ which satisfies 

y(nT) = y_ ,  n = 0, 1, 2 .... (16) 

There is then also a value y+ which satisfies 

y((n + 1/2)7") = y+,  n = 0, 1, 2,... (lV) 
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and the two values y+ are the solution to the simultaneous equations 

T iy+ dx 
2 ~y F(x ,~ .+A)  

(18) 
T fY dx 
2 ~y+ F ( x , ) ~ - A )  

The existence of a stationary state is guaranteed by the existence of a 
solution to these simultaneous equations. 

Likewise, the uniqueness of the stationary state is ensured by the 
uniqueness of the solution to (18). We establish the uniqueness of the 
stationary state for systems with a unique stable steady state for each value 
of the external parameter, i.e., ~ . -  A and ~. + A, and with a unique stable 
steady state for the average force, 

f (x ,  ~., A) ==_ �89 ~. + A) + r(x ,  ~. - A)} (19) 

between the two stable steady states of F(x,~. • A). To prove this, let us 
define 

g(x, ~, A) =- k {F(x, ~ + A) -- F(x, 2 -- A)} (20) 

and 2 and x+ (as before) by 

0 = f(X, ~., A), 0 = F(x•  ~. •  (21) 

Without loss of generality we may take x+ > x_ so that 

x < X < x +  (22) 

The stability of x~ means that 

l > x +  (23) F ( x , ~ i A ) < O ,  x C  W, x <x 

where W is an interval contained in the intersection of the domains of 
F(x, 7~ • A) with 

[x , x + ] c W  (24) 

such that 
l < x _  

F(x, ~. • A) > O, x >x+ (25) 

g(x, 2,A) > [f(x,~.,A)l , x ~  (x_ ,x+)  

A graphical representation of the setup is given in Fig. 2. 
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Fig. 2. An illustration of the setup for the proof of the uniqueness and stability of the 
stationary steady state. The forces F(x, 2 :I:A) each have one stable steady state, are 
continuous and bounded inside W. All solutions with initial conditions in W are attracted to 
the interval [ x ,  x+]. The broken line is --F(x, }~--A). 

The simultaneous equations (18) may be rewritten equivalently as 

= If  + dx g(x) gZ(x) _ f Z(x ) = 5~(y + ) - ~ ( y _  ) 

, + f (x )  
0 =fy_ d X g ~ ( x ) _ f 2 ( x ) =  J ( y + ) -  J ( y _ )  

(26) 

where ~ (x )  and J - (x )  are 

ffodX, g(x') i f ( x )  = g2(x,  ) _ f Z ( x , )  

f ( x ' )  
J ( x )  = f~o ax' g2(x, ) _ f2(x,  ) 

(27) 

and x 0 ~ ( x ,  x+) is arbitrary. Clearly, any solution to the equations (18) 
must lie in the open set (x_,x+):  this interval attracts all solutions with 
initial conditions in W. Equation (25) implies that 

~ ' ( x )  > 0, x ~ (x_, x+) (28) 
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so that ~ ( x )  is a monotonically increasing and hence invertible function on 
this set. We have required the stationary state of the average force to be 
stable, i.e., 

f ( x , ~ . , A ) ~ O ,  x -~Y,  x C  (x_ ,x+)  (29) 

Thus, 
J ' (x)~O, x ~ ,  x6  (x_,x+) 

and we may define two monotonic functions with disjoint domains: 

J+  (x) = ~(x)  

~_(x) = J ( x )  

Equations (26) may then be rewritten 

y+ = ~ - l ( T / 2  4- ff '(y_)),  

(30) 

x~(x,x+) 
(31) 

x~ (x ,x) 

y+ = j ; ' ( J  (y_)) (32) 

Solutions of (26) correspond to the intersection in the (y , y+)  plane of the 
two curves given by (32). Since the first is monotonically increasing and the 
second is monotonically decreasing, they may intersect at most once. Hence 
any solution to (18) is unique. 

The asymptotic stability of the stationary state follows from its 
uniqueness. To see this, consider the difference between any solution x(t) and 
the stationary state y(t) [with y(0) = y_]  

6(t) = x(t) - y ( t )  (33) 

The change in this difference over one period of the external parameter, 

A~ =- ~(t) dt = F(y(t) + 6(t), ,~(t)) dt (34) 

is a function of the initial condition 

~0 - ~(t  = 0)  ( 3 5 )  

We may deduce the qualitative features of the dependence of A6 on c~o: 

1. A~ is a continuous function of c1 o for F(x,}~ • A) continuous 
functions of x; 

2. A6 4:0 for ~o 4:0 by the uniqueness of the stationary state; 

4. A6 X 0 for ~0{X x+-y- since the interval (x ,x+)  is attracting; and A" - - y  

5. IA6l < r6ol for 6o 4:0 since the paths x(t) and y(t) can never intersect 
by the uniqueness of the solutions to Eq. (14). 
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These deduct ions sufficiently determine the behavior  of  A6(6o) as i l lustrated 
in Fig. 3. We may  then construct  the bounded monotone  sequence 

6((n + 1)T) = 6(nT) + A6(6(nT)), n = 0, 1, 2,... (36) 

which clearly converges to zero. Since F(x, ), + A) are bounded on W there 

exists a constant  C such that  

la(t)14Cl6(nT)l, n T 4 t 4 ( n +  1)T 

for initial condit ions in W. Equat ions  (36) and (37) then imply that  

(37) 

l im x(t) = y(t) (38) 
t-*CO 

for all solutions x(t) with initial condit ions in W. 
The uniqueness and stabil i ty of  the s ta t ionary state m a y  in fact be 

establ ished for a somewhat  larger class of  systems with a slightly restr icted 

range of  initial condit ions.  These are systems where, for instance, x is an 
unstable  s ta t ionary  state for F(x, 2 + A). (Of course, the + and - may  be 

A8 
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\ 

\ 
\ 

\ 
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"Ca, 
I 
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I 

(x+- y_) 

\ 
N 

\ 

> 80 

Fig. 3. The change in the variation of an arbitrary solution with initial conditions in W from 
the stationary solution over one period of the external parameter (A6) is plotted against the 
initial variation (60). The broken line is the curve A6 =--6 o. 
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exchanged or they may be considered simultaneously.) The proof of the 
uniqueness of the (nontrivial) stationary state goes as before with the 
restriction that all initial conditions must lie to the right of x_ .  The proof of 
the stability of the stationary state is complicated by the fact that there is a 
trivial stationary state at x_ .  In this case A6(6o) vanishes at both g0 = 0 and 
g0 = x  - y _ ,  and we cannot argue as before regarding the behavior of 
A6(60) for 80 < 0. If, however, for some values of 2 the curve A6(6o) is of the 
form shown in Fig. 3 and the curve varies continuously with 2, then it is 
clear that A6(60) > 0 for x_ - y _  < 80 < 0. 

Once the system has relaxed to its stationary state, we may appeal to its 
ergodicity to find the stationary probability density. The density at a point x 
is proportional to the time spent in a neighborhood of x which is inversely 
proportional to the average of the absolute value of the velocity at x. For 
half the time the velocity is F(x, J, + A) and the other half of the time the 
velocity is F(x,~,--A). Hence, the stationary probability density may be 
written 

q,(x) = N  If(x, 1 +A)J ~- ]F(x,J, - A )  

The support of q,(x) is the interval V =  [y_ ,  y+] c U and given the previous 
assumptions on the nature of F(x, 2 + A) and Eq. (18) we have 

I 1 ' I (4o  qs(X)=V F(x, 2 +A) F(x , ) , -A )  

where 
v = T -1 (41) 

and 
qs(x) =- O, x ~ V (42) 

This density is bounded for all nonvanishing values of v. The extrema of 
q,(x) inside the support V are the solutions of 

O=--F'(x, 2+A)F2(x,J , - -A)+F'(x ,J , - -A)F2(x,J ,+A) (43) 

For linear occurrences of the fluctuation amplitude, the support V 
collapses in the "white noise" limit examined in the previous section. If 

F(x, J, • A) = f (x)  + Ag(x) (44) 

then Eq. (18) may be restated 

1 A 2 c"•  l 
=A Jy dx (45) 

2 v ~: (1/A)f(x) + g(x) 
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Since we are considering systems with g(x) > 0, the only way (45) can be 
satisfied when v ~ oo and A ~ ov such that A 2/v remains constant is for y_ 
and y+ to coalesce. 

4. RANDOM VS. PERIODIC FLUCTUATIONS 

Note the similarity of the functional forms of the stationary density for 
the periodic fluctuations 

l 1 1 I qs(X)=V F(x,~.+A) F(x,~.--A) ' xE  V (46) 

and the stationary density for random fluctuations 

1 1 
Ps(x)= N I F(x,~ + A) F(x ,~-A)  I 

•  dx' F(x , ,~+A)+F(x , , ]_A)  , x C U  
(47) 

The reason for this similarity becomes apparent in the limit 7 = 4v ~ 0 where 
V ~  U and the exponential term in Eq. (47) becomes essentially unity. In this 
case, the fluctuations are occurring on a time scale much longer than the 
characteristic response time of the system. The response time, rsy s, can be 
defined here as a typical decay time of the system near a deterministic steady 
state. For each value of the fluctuating parameter, the system almost 
completely relaxes to its deterministic value x•  With the random variations, 
the probability that the parameter will switch before the system "achieves" 
its deterministic value is very small (Trsys r 1). Over a long period of time, 
the state variable will spend most of the time near the deterministic steady 
states whether the external parameter varies randomly or regularly. The 
distributions begin to differ for Z'corr ~ T ~  rsy s since the fluctuations are then 
occurring often enough for the system to "remember" the occurrences of 
previous switches. 

The simplest systems available for the study of this difference are those 
with additive noise. In these cases, the force in the evolution equation can be 
written 

F(x, ~. + A) = f(x, •) + A (48) 

For the random fluctuations there are several phenomena which may occur. 
The stationary density diverges at the boundaries of the support U for very 
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long correlation times. As the correlation time decreases, so-called "hard" 
noise induced transitions occur at the correlation times where p~(x) ceases to 
diverge, but instead vanishes at one, and then the other boundary. In 
addition, the extrema of the density within the support U are the solutions of 

0 = [f'(x, 2) + 7/21 f(x,  ~) (49) 

The deterministic steady state [given b y f ( x ,  2 ) =  0] is always an extremum, 
but there may be others in the support given by the solutions of 

0 = f ' ( x ,  2) + 7/2 (50) 

For deterministically stable systems, f ' ( x ,  2) is often negative and of the 
order of the characteristic time of the system. We thus have the situation that 
the number of extrema inside the support may change for rcorr"  rsy s. This 
"soft" noise induced transition occurs even though there is no deterministic 
transition. (As a corollary, note that in the white noise limit in which 7--+ oo 
there can be no such noise induced transitions with additive noise.) 

If the same system is subjected to periodic fluctuations, then the 
stationary density qs(x) is bounded, positive definite and has extrema within 
the support V given by the solutions of 

O= f ' (x ,  2)f(x,  2) (51) 

The deterministic steady state is always an extremum, but there may be 
others if the derivative of the force vanishes inside the support V. Contrary 
to the case of random fluctuations the number of extrema can change only if 
the frequency and amplitude of the fluctuations are varied in such a way that 
a boundary of the support crosses an extremum. There are neither the soft 
nor the hard transitions that are possible with the random fluctuations 
although there may be these other fluctuation induced transitions. We find 
already in the simplest of systems effects which depend on the nature of the 
external fluctuations. 

In more complicated systems where the external parameter occurs 
multiplicatively and nonlinearly, there is a complex interplay of the depen- 
dence of the support V of qs(x) on the frequency and amplitude, and of the 
dependence of the shape of qs(x) on the amplitude. There is a different 
complex interaction of the amplitude and correlation time which determine 
Ps(X). It is convenient at this point to introduce a specific example to 
illustrate several of the various phenomena which can occur with the two 
types of fluctuations. 

The physics of liquid crystals supplies us with a system in which the 
external field acts multiplicatively and nonlinearly in the evolution equation 
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of the state variable. The Freedericksz instability in nematic liquid crystals 
has been studied extensively in the deterministic situation. ~ If a sample of 
nematic liquid crystal is layered between two properly prepared plates, the 
director (i.e., the direction vector of the molecular alignment) becomes 
constant in a direction determined by the boundaries. Because of the high 
anisotropy of the magnetic susceptibility, an externally applied magnetic 
field tends to force the director away from this constant configuration. The 
Freedericksz transition results from the competition between the boundary 
effects and the external field. The state of the system is given by the 
amplitude of the inhomogeneity of the director. In terms of normalized 
variables the deterministic evolution equation may be written 

2 = r-Ix(2 2 - 1 - �89 2) (52) 

where r is the zero field (2 = 0) relaxation time. There is a deterministic tran- 
sition at 2 =  1: for 2 < 1, x = 0  is the unique stable steady state, while for 
2 > 1, x = 0 becomes unstable and the states 

x = +[2(1 -2-2)1 ' /2  (53) 

become stable. A complete analysis of the behavior of this system when the 
external parameter varies from its average value by the symmetric 
dichotomous Markov process has been carried out in Ref. 17. The results are 
neatly summarized by the phase diagrams in Fig. 4. Here the qualitative 
behavior of the stationary probability density is given as a function of the 
relative rate of the fluctuations yr and the amplitude A for several average 
values of the external field 2. Both hard and soft noise induced transitions 
occur in this example. 

For a periodically varying external field the stationary probability 
density for the state variable is 

vT I 1 qs(X)=--x- (~, q-A) 2 -  1 -- 1(~. +A)2x2  
1 

(~. - A )  2 -- 1 -- �89 - A )  2 x 2 I 

for x in the support V--- [ y_ ,  y + ] where 

yZ = z•177 1) 

1) + z •  - 1) 

z •  -2] 

a~ =exp  [(~ • 1 ] 

(54) 

(55) 

(56) 

(57) 
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Fig. 4. Phase diagrams for the system described by Eq. (52) under the influence of 
dichotomous Markov noise in the 7r-A plane for two values of the average external field: 
(a) 2 = 1.175, (b)2 = 1.225. The shape of the probability density has been sketched in each 
region. 
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For ~. + A < 1 the density is concentrated at x = 0 while for Z + A > 1 a true 
density exists. Explicit calculation shows that there is only one extremum (a 
minimum_) of the density q~(x) for x C U D V in the region of physically 
relevant 2 and A. Hence in this example there are no soft fluctuation induced 
transitions such as occur with the random variations. 

The boundaries of the support can vary, however, in such a way that 
the distribution changes from having two maxima on the boundaries to a 
monotonic shape. In fact, the direction of the monotonicity can vary with the 
amplitude of the variations. Consider the general situation for the moment. 
As v-~ oo, the boundaries of V coalesce to the same value )7, the stationary 
state of the average force. The transitions described above occur if 

q'(~) 4= 0 (58) 

The sign of the derivative of the stationary density at )7 is thus an indicator 
of the shape of the density at high frequencies. 

We can construct a phase diagram in the (v-A) plane showing the 
behavior of qs(X) as follows: 

1. Find ~ as a function of A. 

2. Find the values of A where q'(~) = 0. 

3. For the values of A in each interval where q'(~(A)) > 0 [<0] find the 
curve v(A) determined by q~(y_(v,A))= 0 [q~(y+(v, A ) ) =  0]. 

When q~(y_)= 0, for instance, the density changes between a monomodal 
and a monotone increasing behavior. The curves v(A) give a partitioning of 
the v-A plane each region of which corresponds to one qualitative state of 
the system. [In the above we have assumed that q,;(x) has only one extremum 
in U for eachA. If this is not the case the transition structure is more 
complicated but the construction of the phase diagram is easily generalized.] 
For the example under consideration, 

X =  [2(1 -- (~2 +A2)-,)],/z (59) 

and the "critical" values of the fluctuation amplitude are 

A = 0, A = (3/2 -~2)~/2 (60) 

Figure 5 shows the phase diagrams constructed for several values of J,. In 
Fig. 5a the probability density of the system displays transitions to both 
monotone increasing and monotone decreasing behaviors from the 
monomodal state observed for low frequencies. When the amplitude of the 
fluctuations is less than the critical value, the probability density has a peak 
at the lower end of its support for high frequencies. Above the critical 
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Fig. 5. Phase diagrams for the system described by Eq. (52) under the influence of periodic 
fluctuations in the vr-A plane for two values of the average external field: (a)2 = 1.175 and 
(b) 2 = 1.225. The shape of the stationary density is sketched in each region. The broken line 
in (a) is at the "critical" value of the fluctuation amplitude [Eq. (60)]. 
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amplitude, the transition is to a state where the peak of the density coincides 
with the upper end of the support. When ~2 > 3/2 as in Fig. 5b, there is only 
the trivial critical amplitude and for all amplitudes of the modulations the 
density has a peak at the upper end of the support for high frequencies. The 
comparison of Figs. 4 and 5 shows the marked dissimilarity in the qualitative 
behavior of this system under the influence of periodic and random noise 
when the time scale of  the fluctuations is of the order of ~sys" 

Several features of the fluctuation induced transitions that occur in this 
example are due specifically to two characteristics of the system: the 
multiplicative nature and the nonlinear occurrence of the external parameter. 
For additive fluctuations q~(~) vanishes identically and the stationary density 
will never change qualitatively at high frequencies. For fluctuations 
occurring linearly, 2 does not depend on zl so that there are no (nontrivial) 
"critical" values of A. That is, in this situation there can be at most one type 
of transition to a monotone density (either to a monotonically increasing or 
decreasing density, but not both). 

5. C O N C L U S I O N S  

There are two main results of this paper. First, we have shown the 
uniqueness and stability of a stationary state for a broad class of systems 
subjected to periodic environmental fluctuations. This has allowed us to 
define a probability distribution for the state variables describing these 
systems and study the various fluctuation induced qualitative changes in the 
density. Secondly, a side-by-side comparison of the noise induced 
phenomena for these periodic and the similar random fluctuations has been 
made. 

We are able to make definite statements about the effects that the two 
kinds of variations have on the behavior of systems as determined by their 
stationary probability densities. For very small or very large fluctuation rates 
(for fixed amplitudes), systems behave similarly under the influence of the 
random or periodic modulations. If the time scale of the noise is of the order 
of the characteristic response time of the system, various fluctuation induced 
transitions can occur but the effects of the two types of noise are quite 
distinct. This is not surprising. When a system is fast enough to respond 
significantly to a variation in its environment it is highly correlated with its 
surroundings. It is interesting that there is in general more transition 
structure when the fluctuations are of the form of the dichotomous Markov 
process than when they are regular. The appearance of the external 
parameter must become increasingly more complex (multiplicative, 
nonlinear) for the various transitions to occur with the periodic variations, 
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whereas even more phenomena can occur in the simplest systems under the 
influence of the random fluctuations. 

There can be random noise induced transitions for very fast fluctuations 
that occur linearly and multiplicatively if the amplitude is scaled accor- 
dingly. This can be seen by considering the number and location of the 
extrema of the density ps(x) in the white noise limit [see Eq. (11)]. In this 
same limit the support of the density q,(x) collapses. The difference between 
the supports of ps(x ) and qs(X) gives us some insight into the nature of the 
mechanism responsible for the way a system discriminates between the two 
modulations at high fluctuation rates. 

The spectral density of the dichotomous Markov process, i.e., the 
Fourier transform of the correlation function given by Eq. (1), is the 
Lorentzian 

~z~ 2 

Sran((o) ~- 7r((j92 _~ ~2) (61)  

The correlation function of the periodic fluctuations is a sawtooth wave 
between • of fundamental (angular) frequency 27rv with Fourier transform 

16A2v 2 
Soer(CO ) = ~. c~ 2 6 ( o -  2zrnv) (62) 

n= • .... 

When v ~ r/y~s, the 6 functions in Eq. (62) are very closely spaced and we 
may approximate the spectrum (62) by the histogram in Fig. 6. Also plotted 
in Fig. 6 is (61) for y = 4v. The correspondence of the two spectral densities 
is consistent which the observed similarities in probability distributions of 
the system for slow fluctuations. 

If v ~> r/yls, we are no longer justified in smoothing out the ~5 functions in 
(62). There are large voids in the spectral density of the periodic 
modulations, most significantly at the low frequencies. The presence of these 
low-frequency components in Sran(Co ), to which the system may respond, is 
the agent preventing the collapse of the support ofps(x  ). In the white noise 
limit, where 

0 .2 
Sran((J)) --~ 2re (63)  

there is an important low-frequency contribution to the power spectrum that 
is missing in the spectral distribution of the periodic fluctuations. A common 
characteristic of all genuinely random processes is the vanishing of the 
correlation function for long times and hence the continuity of the spectral 
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Fig. 6. The histogram is the (log) of the normalized spectral density of the periodic fluc 
tuations overaged over intervals of length 2 on the co/2~rv axis. The solid line is the (log of the 
normalized) spectral density of the dichotomous Markov process for 7 = 4v [Eq. (61)]. 

density. No matter  how complex the regular  variat ions,  any per iodic i ty  in the 
f luctuations will result in a discrete spectrum and the absence of key low- 
frequency components .  
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